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Abstract
We study the motion of kinks in a two-lane model of the totally asymmetric
simple exclusion process with open boundaries. We analytically study the
motion of the kinks by a decoupling approximation. In terms of the decoupling
approximation, we find that the positions of the kinks become synchronized,
though the difference in the number of particles between lanes remains non-
zero when the rate of lane change is asymmetric. The validity of this result is
confirmed for small asymmetric cases through the Monte Carlo simulation.

PACS numbers: 05.70.Ln, 45.70.Vn

1. Introduction

We often encounter congestion of pedestrian flows and traffic flows in our daily life. We also
observe the sticking of grains in granular flows. It is important to study the mechanism of
congestion not only from the industrial point of view but also from the physical point of view.
For the sake of scientific research, we need to analyse a simple model which captures the
essence of the phenomenon.

The asymmetric simple exclusion process (ASEP) is one of the simple models adequate
to describe such a transport phenomenon [1, 2]. It is a stochastic system of particles moving
asymmetrically on a lattice. The simplest limit of ASEP is that the particle is only allowed
to hop in one direction, which is called the totally asymmetric simple exclusion process
(TASEP).

It is known that the stationary state of one-lane ASEP under open boundary conditions has
been obtained exactly [3–6]. Dynamical properties of TASEP are also studied expensively.
The exact solutions of the master equation by Bethe ansatz on an infinite system [7] and a
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periodic system [8] have been obtained. Furthermore, the current fluctuations in an infinite
system and a semi-infinite system [9] are also studied. In the open boundary system, we can
draw a phase diagram by the parameters of inflow rate and outflow rate at the boundaries. On
the phase boundary between the low density phase and the high-density phase, there exists a
diffusive domain wall (kink) [10–14]. Recently, Takesue et al [14] have derived a f −3/2 law
in the power spectrum as a function of the frequency f based on the random walk picture
of the kink, and confirmed its quantitative validity from the comparison of the Monte Carlo
simulation with their theoretical prediction.

However, we know little of the properties of a multi-lane ASEP which is more realistic
than the one-lane model. There are several two-lane models of ASEP [15–18]. As used in [15]
or [16], a realistic lane change rule should refer to the states of the front sites. However, the
rule makes it difficult for us to analyse because we need to construct a transfer matrix to refer to
the states of three or four sites, which are the current site, the front site and the side site,
or the front site of another lane. Belitsky et al [15] successfully analysed the long-time
properties of such the two-lane model in an infinite system. Here, we adopt a simpler
model of lane change in which the particle may change lanes when the side site is vacant
and do not refer to the front site. Although the two-lane (channel) model which adopts
this simple rule is dealt by Pronina et al [18] who analysed the model based on a cluster
approximation and compared the result with their extensive simulations, the lane change
rates and the boundary parameters are symmetric in their model. We extend their model to
the case of asymmetric lane change rule and boundary parameters to study a more general
situation.

The purpose of this paper is to clarify the motion of kinks in a two-lane TASEP. To fulfil
the analysis, we introduce our model and explain how to specify the position of the kink in
the next section. In section 3, we discuss the motion of two kinks based on a decoupling
(mean field) approximation. We find that the motions of the kinks are synchronized though
the number of particles in one lane is different from that in another lane. We compare the
solution with the results of Monte Carlo simulation. In section 4, we discuss the validity of
the mean-field approximation. We find that the two-point correlation function is small during
the relaxation process from the independent motion of two kinks to a synchronized motion of
them. In section 5, we conclude our results.

2. Our model

2.1. Introduction of our two-lane model

Our two-lane model is defined on a two-lane lattice of L × 2 sites, where L is the length of
one lane. We introduce the occupation variable τj ;� where τj ;� = 1 and τj ;� = 0 represent
the occupied state and the vacant state on the j th site in the �th lane, respectively. The
particle moves forward by the rate 1 during the time interval dt if the front site is vacant. We
assume that all the particles drift from the left to the right. The open boundary condition is
characterized by the inflow rate α� and the outflow rate β�. The particle is injected to the
system by the rate α� when the first site in the �th lane is empty, while the particle is extracted
from the system by the rate β� when the Lth site in the �th lane is occupied. On all sites, the
particle is allowed to change lanes only to the neighbouring site. A particle on the 1st (2nd)
lane can change lanes by the rate r↓ (r↑) when the side site in another lane is empty. (See
figure 1 for a schematic explanation of the model.)

We denote the probability of finding the system in the configuration τ = {τ1;1,
τ2;1, . . . , τL;2} by P(τ1;1, τ2;1, . . . , τL;2). We write the time evolution of the two-lane model
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Figure 1. A sample picture of the two-lane model.

by the master equation,

d

dt
P (τ1;1, . . . , τL;2) =

∑
σ1;1

(h1;1)τ1;1;σ1;1P(σ1;1, . . . , τL;2)

+
∑
σ1;2

(h1;2)τ1;2;σ1;2P(τ1;1, . . . , σ1;2, . . . , τL;2)

+
2∑

�=1

L−1∑
j=1

∑
σj ;�,σj+1;�

(hj,j+1;�)τj ;�,τj+1;�;σj ;�,σj+1;�P (τ1;1, . . . , σj ;�, σj+1;�, . . . , τL;2)

+
∑
σL;1

(hL;1)τL;1;σL;1P(τ1;1, . . . , σL;1, . . . , τL;2)

+
∑
σL;2

(hL;2)τL;2;σL;2P(τ1;2, . . . , σL;2)

+
L∑

j=1

∑
σj ;1,σj ;2

(hj ;1,2)σj ;1,σj ;2;τj ;1,τj ;2P(τ1;1, . . . , σj ;1, . . . , σj ;2, . . . , τL;2) (1)

where σj ;� is used for a dummy variable in the summation, and the transition matrices
h1;�, hL;�, hj,j+1;�, hj ;1,2 are represented as

h1,� =
(−α� 0

α� 0

)
1;�

hL,� =
(

0 β�

0 −β�

)
L;�

hj,j+1;� =




0 0 0 0
0 0 1 0
0 0 −1 0
0 0 0 0




j,j+1;�

hj ;1,2 =




0 0 0 0
0 −r↑ r↓ 0
0 r↑ −r↓ 0
0 0 0 0




j ;1,2

.

(2)

Here the density function 〈τj ;�〉 and two-point function 〈τj ;�τk;�′ 〉 are defined by

〈τj ;�〉 =
∑

τ

τj ;�P (τ1;1, . . . , τL;2) (3)

〈τj ;�τk;�′ 〉 =
∑

τ

τj ;�τk;�′P(τ1;1, . . . , τL;2), (4)

where the summation is taken over all the configurations. The time evolution of 〈τj ;�〉 is
written as

d

dt
〈τj ;�〉 = Jj−1,j ;� − Jj,j+1;� − Jj ;�→�′ + Jj ;�′→� (5)

for �′ �= �, where the current Jj,j+1;� between site j and j + 1 is

Jj,j+1;� = 〈τj ;�(1 − τj+1;�)〉 (6)
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and the currents between lanes are

Jj ;1→2 = r↓〈τj ;1(1 − τj ;2)〉 Jj ;2→1 = r↑〈τj ;2(1 − τj ;1)〉. (7)

2.2. The position of the kink

It is known that a kink appears when the inflow rate is equal to the outflow rate and both rates
are smaller than 1/2 in one-lane ASEP. The kinks also appear in the two-lane model when
α1 = β1 < 1/2 and α2 = β2 < 1/2. For r↑ �= 0 and r↓ �= 0, it is obvious that the motion of
one kink depends on another kink.

We need to specify the position of the kinks in order to discuss their correlated motion.
The position of a stable kink in the one-lane ASEP can be determined by using the second-class
particle [10, 11]. However, we adopt another method to determine the position of the kink
by the whole number of particles in a lane. This definition has been used in the domain wall
theory [12–14], and gives the exact position of the kink when the inflow and outflow rates are
small. The advantage to adopt this method is that it is much simpler than the method by the
second-class particle.

We introduce 〈N�〉 for the whole number of particles in each lane

〈N�〉 =
L∑

j=1

〈τj ;�〉. (8)

We also introduce 〈NG〉 and 〈NR〉 by 〈NG〉 = (〈N2〉 + 〈N1〉)/2 and 〈NR〉 = 〈N2〉 − 〈N1〉,
respectively. The position of the kink x� is defined from the equation based on a kink picture

x� = 〈N�〉 − ρ�;+L
ρ�;− − ρ�;+

, (9)

where ρ�;± represent the density of the �th lane. The index + represents the right side of the
position of the kink and index − represents the left side of the position of the kink. It is
straightforward to give equation (9) by summing up the equation

〈τj ;�〉 = ρ�;− + (ρ�;+ − ρ�;−)θ(j − x�) (10)

from j = 1 to L, where θ(z) is the step function,

θ(z) =
{

1 for z � 0

0 for z < 0.
(11)

Thus, once 〈N�〉 is known, we can determine the position of the kink.

3. Mean-field theory

For the large system size L, we can neglect the boundary terms. Thus, the equations for
〈NG〉, 〈NR〉 are given by

d

dt
〈NG〉 = 0 (12)

d

dt
〈NR〉 = −2r↑〈NR〉 + 2(r↓ − r↑)

L∑
j=1

〈τj ;1(1 − τj ;2)〉. (13)

When r↓ = r↑, equation (13) is reduced to

d

dt
〈NR〉 = −2r↑〈NR〉. (14)
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Thus 〈NR〉 relaxes to 0 exponentially, and the number of particles becomes identical in both
lanes in the long time limit.

However for r↓ �= r↑, the problem becomes nontrivial because of the two-point function
in the second term in the right-hand side of equation (13). In general, the two-point correlation
function is determined by an equation including three-point correlation function. Thus, we
cannot obtain the exact form of the many-point correlation functions without truncation of
the hierarchy of correlation functions. Here we adopt the simplest truncation, which is the
decoupling (mean-field) approximation as

L∑
j=1

〈τj ;1(1 − τj ;2)〉 �
L∑

j=1

〈τj ;1〉(1 − 〈τj ;2〉). (15)

We also use the kink picture (10) to approximate the density profile 〈τj ;�〉.
Let us discuss the motion of two kinks starting from the initial condition where

two separated kinks exist in both lanes. The density profile changes in time during the
synchronization of the kinks. Furthermore, we assume that the density changes by keeping
the density profile (10). Thus, we have to determine the time evolution of the density ρ�;± on
the both sides of the kink. By introducing ρG;± = ρ2;±+ρ1;±

2 and ρR;± = ρ2;± − ρ1;±, the time
evolution equations for ρG;± and ρR;± are, respectively, written as

d

dt
ρG;± = 0 (16)

d

dt
ρR;± = −(r↑ + r↓)ρR;± +

1

2
(r↓ − r↑)ρ2

R;± + (r↓ − r↑)
(
ρG;± − ρ2

G;±
)
. (17)

Equations (16) and (17) can be solved exactly,

ρG;± = ρ0
G;± (18)

ρR;± = ω− +
2γ

ε

e−γ t

e−γ t − C±
, (19)

where

ε = r↓ − r↑ γ = 1

2
(r↓ − r↑)(ω+ − ω−) (20)

ω± = r↓ + r↑ ± √
(r↓ + r↑)2 − 2(r↓ − r↑)2(α1 + α2 − (α1 + α2)2/2)

r↓ − r↑
(21)

C± = ρ0
R;± − ω+

ρ0
R;± − ω−

. (22)

The initial conditions ρ0
G;± and ρ0

R;± are taken as the stationary densities in one-lane model as

ρ0
G;− = α1 + α2

2
ρ0

R;− = α2 − α1 (23)

ρ0
G;+ = 2 − α1 − α2

2
ρ0

R;+ = α1 − α2. (24)

Thus, we obtain the density ρ�;−

ρ1;− = ρ ′
1 − γ

ε

e−γ t

e−γ t − C−
ρ2;− = ρ ′

2 +
γ

ε

e−γ t

e−γ t − C−
(25)
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Figure 2. The comparison of time evolution between the simulation and the calculation. The
solution (A.4) is shown by the solid line and the simulation result is shown by the crosses (×).
The parameters are α1 = β1 = 0.1, α2 = β2 = 0.15, r↓ = 0.11, r↑ = 0.1, L = 1000. Time step
is taken for each Monte Carlo step. The initial condition is fixed to 〈NR〉0 = 75 and averaged over
1000 samples.

and the density ρ�;+

ρ1;+ = 1 − ρ ′
2 − γ

ε

e−γ t

e−γ t − C+
ρ2;+ = 1 − ρ ′

1 +
γ

ε

e−γ t

e−γ t − C+
(26)

where

ρ ′
1 = α1 + α2 − ω−

2
ρ ′

2 = α1 + α2 + ω−
2

. (27)

Therefore, we obtain the time evolution of the density profile 〈τj ;�〉 for r↓ �= r↑.
Substituting equation (10) into (13) with the aid of (15), we obtain

d

dt
〈NR〉 = −(2r↑ + ε(1 − ρ2;− + ρ1;+))〈NR〉 + 2ε(ρ1;+ρ2;−L + (1 − ρ1;+ − ρ2;−)〈NG〉) (28)

for x1 < x2 and
d

dt
〈NR〉 = −(2r↑ + ε(1 − ρ2;+ + ρ1;−))〈NR〉 + 2ε(ρ1;−ρ2;+L + (1 − ρ1;− − ρ2;+)〈NG〉) (29)

for x1 > x2. Equations (28) and (29) can be solved exactly, though the expression is lengthy
(see (A.4) and (A.5)). Here, we present the solution for 〈NR〉 in the long time limit as

〈NR〉∞ = ερ ′
1(1 − ρ ′

1)L

r↑ + ερ ′
1

(30)

for x1 > x2, and

〈NR〉∞ = ερ ′
2(1 − ρ ′

2)L

r↓ − ερ ′
2

(31)

for x1 < x2. These results show that there remains the mean difference of the number of
particles between lanes. The validity of our analysis based on the decoupling approximation
is confirmed by the comparison of our result with the Monte Carlo simulation when |r↑ − r↓|
is not large. Figure 2 shows the quantitative accuracy of our analysis in the time evolution of
〈NR〉.

Though 〈NR〉 remains finite, the positions of the kinks are synchronized. In fact, from
equations (30) or (31) and (9), we obtain

x2 − x1 = 0. (32)
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Figure 3. The time evolution of the value A from the simulation. The parameters used in this
simulation are the same as those used in figure 2.
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Figure 4. Left: the comparison of time evolution between the simulation and the calculation. The
solution (A.4) is shown by the solid line and the simulation result is shown by the crosses (×).
Right: the time evolution of the value A from the simulation. In both figures, the parameters are
α1 = β1 = 0.1, α2 = β2 = 0.15, r↓ = 0.03, r↑ = 0.01, L = 1000. Time step is taken for each
Monte Carlo step. The initial condition is fixed to 〈NR〉0 = 75 and averaged over 1000 samples.

Thus, the positions of the kinks become identical in the long time limit. This result is
reasonable, because we cannot choose a preferable congestion front in traffic jams.

4. Discussion

Now let us discuss the validity of the decoupling approximation. Although it is difficult to
evaluate the two-point function exactly, it is possible to evaluate it from the Monte Carlo
simulation. The result of our simulation for the two-point function

A =
∑L

j=1〈τj ;1τj ;2〉 − ∑L
j=1〈τj ;1〉〈τj ;2〉∑2

�=1

∑L
j=1

〈
τ 2
j ;�

〉 (33)

is shown in figure 3 for the same parameters as used in figure 2, where we realize that A is
small between t = 30 and t = 100. The synchronization is realized before t = 30 as we can
see in figure 2. Thus, we may expect that the decoupling approximation adopted here works
well to describe the synchronization of the kinks.
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Figure 5. The difference between the stationary density given by the simulation and that by
equation (17) in the corresponding low-density region. The symbols (+) stand for the first lane,
the symbols (×) stand for the density in the second lane and the approximation is shown by
the solid line. The boundary parameters are α1 = 0.1, β1 = 0.9, α2 = 0.15, β2 = 0.85,

r↓ = 0.03, r↑ = 0.01, L = 1000.

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 0.5 1 1.5 2
r /r -1

Figure 6. The final difference between the kink positions given by the simulation and the
analysis. The crosses (×) show the difference and the solid line is the guideline which is
proportional to (

r↓
r↑ − 1)2. The boundary parameters are α1 = β1 = 0.1, α2 = β2 = 0.15,

L = 1000.

However there is a certain parameter region that the decoupling approximation fails. In
fact, the left figure in figure 4 shows 〈NR〉 obtained from the simulation deviates from that
in the decoupling approximation. The positions of the kinks are not identical in this case.
The value A given by the simulation in the right figure in figure 4 when it deviates from the
decoupling approximation. The value A is almost 0 in the region between t = 30 and t = 200.
In such a region the stationary density ρ�;± is not given by equation (17). The comparison of
ρ�;− between the result of the simulation and the solution of equation (17) is shown in figure 5.
We can see that the density derived from the mean-field theory deviates from the result of the
simulation. Thus, in the region where the final densities of each lane differ from the solutions
of equation (17), the final positions of the kinks are not identical.
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To verify the valid region of the decoupling approximation, in figure 6, we plot the
deviation from the decoupling approximation in the difference between two kinks as a function
of r↓/r↑ −1. From figure 6, we find that the deviation is proportional to δ2 = (r↓/r↑ −1)2 for
the small asymmetric cases. This is an interesting result, because the decoupling approximation
predicts 〈NR〉 ∝ δ. Namely, the decoupling approximation can be used when we can regard
δ as finite but δ2 as negligible. In addition, the curvature of the parabola is relatively small,
which ensures that we may use the approximation in δ < 0.2. The quantitative analysis of the
violation of the decoupling approximation will be a future problem.

5. Conclusion

In this paper, we have studied the motion of kinks in the two-lane TASEP. We obtain the explicit
time evolution function of the average number of particles in each lane which is related to the
position of the kink by adopting the decoupling approximation of the two-point correlation
function. We find that the positions of the kinks are synchronized, though the number of
particles in a lane can be different from that in another lane. We confirm the validity of
our analysis by comparing the result of the Monte Carlo simulation and the analytical result.
The deviation from the mean-field analysis is small when the lane change rates are nearly
symmetric.
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Appendix. The calculation of 〈NR〉

In this appendix, we give the explicit expression of 〈NR〉. Equation (29) is solved as

〈NR〉 = 〈NR〉0 exp

(
−

∫ t

0
dt ′(2r↑ + ε(1 − ρ2;+ + ρ1;−))

)

+ ε

∫ t

0
dt ′ exp

(∫ t ′

t

dt ′′(2r↑ + ε(1 − ρ2;+ + ρ1;−))

)

×(2Lρ1;−ρ2;+ + 2(1 − ρ1;− − ρ2;+)〈NG〉). (A.1)

Here, we perform the integral in the argument of the exponential function∫ t

0
dt ′(1 − ρ2;+ + ρ1;−) = 2ρ ′

1t +
1

ε
ln

(
(C+ − e−γ t )(C− − e−γ t )

C+C−

)
. (A.2)

Therefore,

exp

(
−

∫ t

0
dt ′(2r↑ + ε(1 − ρ2;+ + ρ1;−))

)
= exp(−2(r↑ + ερ ′

1)t)
C+C−

(C+ − e−γ t )(C− − e−γ t )
.

(A.3)
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After executing the calculation, we finally achieve

〈NR〉 = 〈NR〉0 exp(−2(r↑ + ερ ′
1)t)

C+C−
(C+ − e−γ t )(C− − e−γ t )

+
ε

(C+ − e−γ t )(C− − e−γ t )

×
[
Lρ ′

1(1 − ρ ′
1)C+C−

1 − exp(−2(r↑ + ερ ′
1))

r↑ + ερ ′
1

+
e−γ t − exp(−2(r↑ + ερ ′

1))

2(r↑ + ερ ′
1) − γ

× 2L

(
γ

ε
(C+ − ρ ′

1(C− + C+)) − (C− + C+)ρ
′
1(1 − ρ ′

1)

)

+
e−γ t − exp(−2(r↑ + ερ ′

1))

2(r↑ + ερ ′
1) − γ

2γ

ε
(C− − C+)〈NG〉

+
e−2γ t − exp(−2(r↑ + ερ ′

1))

r↑ + ερ ′
1 − γ

(
− γ 2

ε2
+

γ

ε
(2ρ ′

1 − 1) + ρ ′
1(1 − ρ ′

1)

)
L

]
(A.4)

for x1 > x2, and

〈NR〉 = 〈NR〉0 exp(−2(r↓ − ερ ′
2)t)

C+C−
(C+ − e−γ t )(C− − e−γ t )

+
ε

(C+ − e−γ t )(C− − e−γ t )

×
[
Lρ ′

2(1 − ρ ′
2)C−C+

1 − exp(−2(r↓ − ερ ′
2))

r↓ − ερ ′
2

+
e−γ t − exp(−2(r↓ − ερ ′

2))

2(r↓ − ερ ′
2) − γ

× 2L

(
γ

ε
(C+ + ρ ′

2(C− − C+)) − (C− + C+)ρ
′
2(1 − ρ ′

2)

)

+
e−γ t − exp(−2(r↓ − ερ ′

2))

2(r↓ − ερ ′
2) − γ

2γ

ε
(C− − C+)〈NG〉

+
e−2γ t − exp(−2(r↓ − ερ ′

2))

r↓ − ερ ′
2 − γ

(
− γ 2

ε2
+

γ

ε
(2ρ ′

2 − 1) + ρ ′
2(1 − ρ ′

2)

)
L

]
(A.5)

for x1 < x2.
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[12] Kolomeisky A B, Schütz G M, Kolomeisky E B and Straley J P 1998 J. Phys. A: Math. Gen. 31 6911
[13] Santen L and Appert C 2002 J. Stat. Phys. 106 187
[14] Takesue S, Mitsudo T and Hayakawa H 2003 Phys. Rev. E 68 015103(R)
[15] Belitsky V, Krug J, Neves E J and Schütz G M 2001 J. Stat. Phys. 103 945
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